Q.P. Code: 34856

	Durai	ion: 5 Hours	A SOLD					
N.B	(1) A	(1) All questions are compulsory						
	(2) Fi	(2) Figures to the right indicate full marks						
	(3) A	(3) Answer all sub questions together						
	$(4) D_1$	(4) Draw neat labeled diagrams wherever necessary						
Q.1	A)	Answer the following (any SEVEN)	7M					
	i.	Name two types of burners used in flame photometry	1,000					
	ii.	Enlist bending vibrations in IR spectroscopy	55/17					
	iii.	Name two sources used in IR spectrometer.	19E7					
	iv.	Name the material used for making sample cell windows in IR Spectroscopy	ĸ`					
	v.	Define Wavelength maxima						
	vi.	Define the unit Becquerel used in radiochemistry						
	vii.	Calculate the absorbance of solution giving transmittance of 10 %						
	viii.	Name two types of filters used in colorimeter						
Q.1	B)	Answer the following (any FOUR)	8M					
	i.	Explain the term excited Triplet state						
	ii.	What is Cut off wavelength of the solvent? Give its significance						
	iii.	Fluorimetric analysis is more specific as compared to UV Visible spectroscopic						
		analysis. State whether true or false. Justify your answer.						
	iv.	What are cationic interference in flame phototometry?						
	v.	Explain the terms Sievert and Gray with reference to radiochemistry						
Q2	A)	Answer the following (any TWO)	8M					
	i	With the help of suitable diagram explain working of photon multiplier tube						
	\$ 10 C	detector.						
2010	ii.	Enlist any four applications of X ray diffraction						
	iii.	Draw block diagram of Raman Spectrometer. Give any two applications of						
	S S W S	Raman Spectroscopy.						
Q2	B)	Define the term Radionuclidic purity. Give one example of radionuclidic	3M					
		impurity and the instrument used to detect the same.						
Q3	A)	Answer the following (any TWO)	08M					
70 VO VO	So i.	Discuss any four factors affecting the TG curve						
	ii.	Write a note on FTIR spectrophotometer						
	iii.	Differentiate between AAS and AES based on the principle involved .Give one						
	200 00 K	advantage, one disadvantage and one application of AAS						
O3	B)	Enlist factors influencing vibrational frequencies in IR spectroscopy.	03M					

Q.P. Code: 34856

Q4 A) Answer the following (any TV

08M

- i. When is chemical derivatization employed in UV-Visible and fluorescence spectroscopy? Name one derivatizing agent in each of these spectroscopic techniques with its application.
- ii. In assay of streptomycin by colorimetric method following results were obtained. Perform linear regression to determine slope and intercept of calibration line with the data

Concentration of Streptomycin	Absorbance at 530 nm						
(mg/ml)							
5							
10							
15							
20	0.81						
25	X X X X X X X X X X X X X X X X X X X						

iii. <u>In standardization of 0.1 N NaOH, burette</u> readings obtained were as follows

Day 1	15.6	15.5	15.7	15.9	15.3
Day2	15.0	15.5	15.4	16.4	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Was the variance on day 1 significantly different from day 2 at 95% confidence level[Tabulated F value is 6.59]

Q4 B) With the help of an example explain thermo gravimetric curve.

03M

Q5 A) Answer the following (any TWO)

- 08M
- i. Define fluorescence. Discuss any three factors affecting fluorescence intensity.
- ii. Explain the term overtones with reference to Near IR spectroscopy with suitable diagram. Give one pharmaceutical application of Near IR spectroscopy.
- iii. Enlist three methods for used in quantitative UV spectrophotometric assay of single component formulation. Explain any one in detail
- Q5 B) Derive Bragg's Law in X ray diffraction

03M

Q6 A) Answer the following (any two)

08M

- i. Discuss the UV spectrophotometric method for determination of equilibrium constant
- ii. Draw block diagram of Spectroflourimeter. Explain role of each of its components in brief.
- iii. Discuss attenuated total reflectance technique for sample handling in IR spectroscopic analysis of sample.
- Q6 B) A (1%, 1cm) of a drug at its wavelength maxima (λmax) is 714. When 1 ml of the injection containing drug was diluted to 1000 ml, the solution gave an absorbance of 0.728 at λmax when measured in 1 cm cell. Calculate the concentration of drug in the injection in mg/ml.