Duration: 3 Hrs Maximum marks: 70

Note: All Questions are compulsory.

Use of simple calculator is allowed.

Figure at right indicate maximum marks.

Q1. (a) Attempt any 7 [2 marks each]:

[14]

(i) If
$$A = \begin{bmatrix} 4 & -2 \\ -5 & 7 \end{bmatrix}$$
 $B = \begin{bmatrix} -3 & 6 \\ 4 & 3 \end{bmatrix}$ then $(2A + B)^T$ is:

(a)
$$\begin{bmatrix} 5 & 2 \\ -6 & 17 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 5 & 2 \\ -6 & 17 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 & -5 \\ -2 & 7 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & -6 \\ 2 & 17 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 4 \\ 6 & -3 \end{bmatrix}$

(c)
$$\begin{bmatrix} 5 & -6 \\ 2 & 17 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3 & 4 \\ 6 & -3 \end{bmatrix}$$

(ii) The
$$N^{th}$$
 derivative of $y = 2 \cos^2 x$ is :

(a)
$$-2^n \cos(2x+n\pi/2)$$
 (b) $-4 \cos x \sin x$ (c) $2^n \cos(2x+n\pi/2)$ (d) $2^n \sin(2x+n\pi/2)$

(iii) For
$$f(x, y) = x^2 + xy + y^2$$
, the value of $\frac{\partial^2 f}{\partial x \partial y}$ is:

(d)
$$x + 2$$

(iv)
$$\Delta f(x)$$
 for the function $f(x) = 1/x$, by taking $h = 1$ is:

(b)
$$1/x^2$$
 (c) $-1/(x^2 + x)$

(d)
$$1/(x^2 + x)$$

(v) The volume of the solid obtained by the revolution of area y = sinx and x-axis between the

(b)
$$\pi^2/2$$

(c)
$$\pi^2/4$$

(vi) The solution of the differential equation xdx + ydy = 0 is:

(a)
$$x^2 + y^2 = c$$
 (b) $x^2 - y^2 = c$ (c) $x + y = c$ (d) $x - y = c$

o)
$$x^2 - y^2 = 0$$

(c)
$$x + y = c$$

(d)
$$x - y =$$

The value of $\int \log x \, dx$ is : (vii)

(a)
$$x \log x - 1 + c$$

(a)
$$x \log x - 1 + c$$
 (b) $x \log x + 1 - c$ (c) $x (\log x + 1) + c$ (d) $x (\log x - 1) + c$

(d)
$$x(\log x - 1) + c$$

The differential equation for the function y = mx is:

(a)
$$x dy - y dx = 0$$
 (b) $x dy + y dx = 0$ (c) $y dy - x dx = 0$ (d) $y dy + x dx = 0$
The inverse of the matrix $A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$ is:

(ix) The inverse of the matrix
$$A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$$
 is

(a)
$$\frac{1}{14}\begin{bmatrix} 3 & -4 \\ 2 & 2 \end{bmatrix}$$

(b)
$$\frac{1}{12}\begin{bmatrix} -3 & 4 \\ -2 & 2 \end{bmatrix}$$

$$(c) \frac{1}{14} \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$\text{(a)} \frac{1}{14} \begin{bmatrix} 3 & -4 \\ 2 & 2 \end{bmatrix} \quad \text{(b)} \frac{1}{12} \begin{bmatrix} -3 & 4 \\ -2 & 2 \end{bmatrix} \quad \text{(c)} \frac{1}{14} \begin{bmatrix} 2 & -4 \\ -2 & 3 \end{bmatrix} \quad \text{(d)} \frac{1}{14} \begin{bmatrix} 2 & 2 \\ -4 & 3 \end{bmatrix}$$

(b) Attempt any 1:

[1]

(x) The value of
$$\int_{-2}^{2} \frac{x}{1+x^2} dx$$
 is: (a) -2

(xi) Nth derivative of y =
$$\frac{1}{9x+2}$$
 is (a) $\frac{(-1)^{n-1}(n-1)!9^n}{(9x+2)^n}$ (b) $\frac{(-1)^n(n)!9^n}{(9x+2)^{n+1}}$ (c) $\frac{(-1)^{n-1}(n-1)!9^n}{(9x+2)^{n+1}}$ (d) $\frac{(-1)^n(n)!9^n}{(9x+2)^n}$

(a)
$$\frac{(-1)^{n-1}(n-1)!9}{(9x+2)^n}$$

(b)
$$\frac{(-1)^n(n)!9^n}{(9x+2)^{n+1}}$$

(c)
$$\frac{(-1)^{n-1}(n-1)!9^n}{(9x+2)^{n+1}}$$

(d)
$$\frac{(-1)^n(n)!9}{(9x+2)^n}$$

	1-1	A	
O2.	(a)	Attempt any two	ı 4 marks eacn

[8]

- Find the Nth derivative of $y = \frac{x}{(x+3)(x-2)}$ (i)
- (ii) Using Taylor's series, expand sin x in ascending powers of $(x - \frac{n}{2})$
- If $U = y \sin(xy)$, prove that $y \frac{\partial U}{\partial y} x \frac{\partial U}{\partial x} = U$ (iii)

(b) Attempt any one(3 marks)

[3]

- (i) Verify Rolle's theorem for the function $f(x)=x^2-3x+2$ in [1,2]
- If $y=x^3\log x$, find: y_4 using Leibnitz's theorem. (ii)

Q3. (a) Attempt any two (4 marks each)

[8]

- Obtain the reduction formula for $\int_0^{\frac{\pi}{2}} Sin^n x \, dx$, hence evaluate $\int_0^{\frac{\pi}{2}} Sin^{10} x \, dx$ (i)
- Find the whole area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (ii)
- (iii) Prove that $\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{4}$

(b) Attempt any one(3 marks)

[3]

- Find the area bounded by the parabola $x^2=4y$, X-axis and the lines x=1 and x=3(i)
- By using the properties of Definite Integral, Evaluate $I = \int_0^2 \left(\frac{x^2 4}{x^2 + 4}\right) dx$ (ii)

Q4. (a) Attempt any two (4 marks each)

[8]

- By using the Adjoint method, find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ (i)
- Prove that $\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (x-y)(y-z)(z-x)$ Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ (ii)
- (iii)

Attempt any one(3 marks) (b)

[3]

- Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ (i)
- (ii) Solve by Cramer's rule:x+y+z=6; 2x+y-2z=-2; x+y-3z=-6

Q5. (a) Attempt any two (4 marks each) (i) Find the particular solution of: $(D^2+D-2)y=0$, when x=0, y=1 and $\frac{dy}{dx}=0$

(ii) Solve the differential equation: (1-x)dy-(1+y)dx=0

(iii) Solve: $(D^2+3D+2)y=x+x^2$

(b) Attempt any one (3 marks)

[3]

[8]

- (i) Form the differential equation for $x^2 + y^2 2ax = 10$
- (ii) Solve (1-x)dy -(1+y)dx = 0. Also find the particular solution, if y = 2 when x = 1

Q6. (a) Attempt any two (4 marks each)

[8]

- (i) Use Lagrange's Interpolation formula to find the polynomial passing through the points (0,8),(1,4) & (3,2). Hence find the value of y when x=2.
- (ii) Evaluate $\int_0^2 x^2 dx$ by using Trapezoidal rule (with h=0.2)
- (iii) Estimate the missing value by using E and Δ from the following:

Х	1	2	3	4	5
У	2	4	8	- 4	32

(b) Attempt any one (3 marks)

[3]

- (i) For a certain function f(x), f(1) = 10, f(2)=16, f(3) = 26 and f(4) = 40, estimate f(2.5) by Newton's forward difference formula.
- (ii) Solve: $(\frac{\Delta^2}{E})x^4$ by taking h = 1