[Time: 3 Hours] [Marks:70]

Please check whether you have got the right question paper.

- N.B: 1. All questions are compulsory.
 - 2. Use of simple calculator is allowed.
 - 3. Figures to the right indicate full marks.
- Q.1 (A) Attempt any 7 [2 marks each]

- 1) If $A = \begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$ then the inverse of the A is:
 - a) $\begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 3 & 5 \\ 4 & 7 \end{bmatrix}$
- 2) With respect to Rolle's theorem the value of 'c' corresponding to $f(x)=x^2-4x+3$ is:
 - a) 1
 - b) 2
 - c) 3
- 3) The value of $\int log x dx$ is:
 - a) 1/x
 - b) xlogx+x+c
 - c) xlogx-x+c
 - d) xlogx-x
- 4) If y=2x, then Δy by taking h=1 is:
 - a) 4
 - b) 2
 - c) 3
 - d) 1
- 5) If A= $\begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ x & 2 & 4 \end{bmatrix}$ is a singular matrix, then the value of x is:
 - a) 1
 - b) 2
 - c) 4
 - d) 6

- 6) The N^{th} derivative of f(x) = log(2x+1) is:
 - a) $y_n = \frac{1}{2(2x+1)}$
 - b) $y_n = \frac{(1)^{n-1}(n-1)!2^n}{(2x+1)^n}$
 - c) $y_n = \frac{(1)^n (n)! 2^n}{(2x+1)^n}$
 - d) $y_n = \frac{(1)^n (n-1)! 2^n}{(2x+1)^n}$
- 7) General solution for the differential equation (D³-6D²+9D)y=0 is:
 - a) $(c_1x+c_2)e^{3x}+c_3$
 - b) $c_1e^{3x}+c_2e^{3x}+c_3e^{0x}$
 - c) $(c_1x+c_2x)e^{3x}+c_3$
 - d) $(c_1x+c_2)e^3+c_3e^{3x}$
- 8) The partial derivative of $Z=3x^2+2xy+xy^2$ with respect to x is:
 - a) 6x+2y+2xy
 - b) $6x+2y+2y^2$
 - c) $3x+2y+y^2$
 - d) $2x+xy+xy^2$
- 9) If A = $\begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ t & 2 & 4 \end{bmatrix}$ is a singular matrix, then the value of t is:
 - a) 1
 - b) 2
 - c) 4
 - d) 6
- (B) Attempt any one (3 marks)
 - 10) Which of the following is not a homogeneous differential equation?
 - a) f(x,y)=2x-9y
 - b) $f(x,y)=3x^2-7y^3$
 - c) $f(x,y)=x^2+3y^2-3xy$
 - d) a and c
 - 11) The value of $\int_{-2}^{2} x^5 dx$ is:
 - a) 16/3
 - b) 8/3
 - c) 0
 - d) 3/16
- Q.2 (A) Attempt any two (4 marks each)
 - 1) Find the Nth derivative of $y = \frac{x}{(x+2)(x-2)}$
 - 2) Using Maclaurin's series, give the expansion of f(x)=sin x.
 - 3) Examine the function $f(x,y)=x^3+3xy^2-15x^2-15y^2+72x$ for maxima and minima.

8

1

- (B) Attempt any one (3 marks)
 - 1) Verify Rolle's theorem for the function $f(x)=x^2-3x+2$ in [1,2]
 - 2) If $y=x^3\log x$, find : y_4 using Leibnitz's theorem.
- Q.3 (A) Attempt any two (4 marks each)
 - 1) Obtain the reduction formula for $\int_0^{\frac{\pi}{2}} sin^n x \, dx$, hence evaluate $\int_0^{\frac{\pi}{2}} sin^8 x \, dx$.
 - 2) Find the length of the curve $x=a\sin\theta$, $y=a\cos\theta$ from $\theta=0$ to $\theta=\pi/4$
 - 3) Evaluate: $\int e^x \cos x \, dx$
 - (B) Attempt any one (3 marks)
 - 1) Find the area bounded by the parabola $x^2=4y$, X-axis and the lines x=1 and x=3
 - 2) By using the properties of Definite Integral, Evaluate $1 = \int_0^2 \left(\frac{x^2 4}{x^2 + 4}\right) dx$
- Q.4 (A) Attempt any two (4 marks each)
 - 1) By using the Adjoint method, find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
 - 2) Prove that $\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (x-y)(y-z)(z-x)$
 - 3) Verify Cayley Hamilton theorem for the matrix: A= $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (B) Attempt any one (3 marks)
 - 1) Find the rank of the matrix A= $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$
 - Solve by Cramer's rule :
 x+y+x=6; 2x+y-2z=-2; x+y-3z=-6
- Q.5 (A) Attempt any two (4 marks each)
 - 1) Find the particular solution of: (D²+D-2)y=0, when x=0, y=1 and $\frac{dy}{dx}=0$
 - 2) From the differential equation for y = A cos(logx)+ B sin(logx)
 - 3) Solve $(x^3+y^3)dy=x^2y dx$
 - (B) Attempt any one (3 marks)
 - 1) Solve (1-x)dy-(1+y)dx = 0. Also find the particular solution, if y = 2 when x = 1
 - 2) Form the differential equation for $x^2+y^2-2ax = 10$

3

8

3

8

3

8

3

Q.6 (A) Attempt any two (4 marks each)

1) Use Lagrange's Interpolation formula estimate y when x=4

Х	0	2	5	6
Υ	7	11	17	19

- 2) Evaluate $\int_0^2 x^2 dx$ by using Trapezoidal rule (with h=0.2)
- 3) Estimate the missing value by using E and Δ from the following:

Х	1	2	3	4	5
Υ	2	4	8	-	32

(B) Attempt any one (3 marks)

1) Given:

•						
	х	1	3	4		
	f(x)	1	5	7		

Assuming $\Delta^3 f(x) = 0$, find f(2), take h=1

2) Evaluate : $\left(\frac{\Delta^2}{E}\right) Sinx$

8